An Identity for Sums of Polylogarithm Functions

نویسنده

  • Steven J. Miller
چکیده

We derive an identity for certain linear combinations of polylogarithm functions with negative exponents, which implies relations for linear combinations of Eulerian numbers. The coefficients of our linear combinations are related to expanding moments of Satake parameters of holomorphic cuspidal newforms in terms of the moments of the corresponding Fourier coefficients, which has applications in analyzing lower order terms in the behavior of zeros of L-functions near the central point.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IDENTITIES FOR SUMS OF A q-ANALOGUE OF POLYLOGARITHM FUNCTIONS

We present several identities for sums of q-polylogarithm functions. Our motivation for these are the relations between the q-zeta function (see [3, 4, 12] and references therein), q-polylogarithm functions (see below) and the quantum group SUq(2). More precisely, the left regular representation of the quantum group SUq(2) is the coordinate ring A(SUq(2)) represented as a left Uq(sl(2))-module....

متن کامل

ZETA SERIES GENERATING FUNCTION TRANSFORMATIONS RELATED TO POLYLOGARITHM FUNCTIONS AND THE k-ORDER HARMONIC NUMBERS

We define a new class of generating function transformations related to polylogarithm functions, Dirichlet series, and Euler sums. These transformations are given by an infinite sum over the jth derivatives of a sequence generating function and sets of generalized coefficients satisfying a non-triangular recurrence relation in two variables. The generalized transformation coefficients share a n...

متن کامل

A Note on Stirling Series

We study sums S = S(d, n, k) = ∑ j≥1 [ d] jk( j )j! with d ∈ N = {1, 2, . . . } and n, k ∈ N0 = {0, 1, 2, . . . } and relate them to (finite) multiple zeta functions. As a byproduct of our results we obtain asymptotic expansions of ζ(d + 1) −H n as n tends to infinity. Furthermore, we relate sums S to Nielsen’s polylogarithm.

متن کامل

Special Functions Related to Dedekind Type Dc-sums and Their Applications

In this paper we construct trigonometric functions of the sum Tp(h, k), which is called Dedekind type DC-(Dahee and Changhee) sums. We establish analytic properties of this sum. We find trigonometric representations of this sum. We prove reciprocity theorem of this sums. Furthermore, we obtain relations between the Clausen functions, Polylogarithm function, Hurwitz zeta function, generalized La...

متن کامل

Special Values of Multiple Polylogarithms

Historically the polylogarithm has attracted specialists and non specialists alike with its lovely evaluations Much the same can be said for Euler sums or multiple harmonic sums which within the past decade have arisen in combinatorics knot theory and high energy physics More recently we have been forced to consider multidimensional extensions encompassing the classical polylogarithm Euler sums...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008